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Abstract. The systematics of the isovector Giant Dipole Resonance (GDR) is studied via the microscopic
semi-classical Vlasov method. The calculated results of the peak energy and the widths (FWHM) of the
GDR strength distribution can reproduce the experimental data and follow the empirical formula. The
isospin effects on the peak energy and the widths of the GDR strength distribution are found small and
these effects increase slightly with the (N −Z)/A. The characteristics of the GDR have been studied as a
function of the temperature in very heavy compound systems (A > 300). The interplay between one-body
damping and two-body damping is also discussed.

PACS. 24.30.Cz Giant resonance – 20.60.Ev collective model

1 Introduction

GDR built on excited states of hot nuclei has been in-
tensively researched both experimentally and theoretically
in the recent decades [1–3]. Some properties of the GDR
have been well established. The spectrum of the GDR γ
rays has a good Lorentzian shape. Moreover, this spec-
trum strongly depends on the other nuclear degrees of
freedom, such as nuclear shape and angular momentum.
So, the GDR γ rays is a good probe to provide us more
informations on properties of hot nuclei: the shapes and
fluctuation of hot nuclei, fission delay and dissipative ef-
fects in hot-fission-unstable nuclei etc..

With the availability of newly constructed radioactive
beam lines and 4π detector systems now and in the future,
it becomes possible to study the properties and decay of
the hot nuclei far from β stability line. So, it is important
to know whether the theory describing the GDR for nuclei
around the β stability line can be extrapolated to drip-line
regions and what the characteristics of the GDR will be in
such region. The quantum random phase approximation
(RPA) is quite successful in describing the collective mode
of the nucleus. It can give the main characteristics of many
closed shell nuclei although it is complicated to work and
not very transparent in results. Recently, people apply this
method to nuclei far from the β stability line, or with high
spin and super-deformed shape etc.. Z.Y. Ma et al. [4–5]
and N.V. Giai et al. [6] studied the changes of the GDR for
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different Ar isotopes using RPA based on the Relativistic
Mean Field theory (RRPA). I. Hamamoto et al. [7–8] have
combined the RPA with self-consistent Hartree-Fork the-
ory to study the characteristics of the GDR for the nuclei
around the drip-line. In our paper, GDR are studied sys-
tematically in the frame of the semi-classical microscopic
Vlasov method and the experimental systematics of the
peak energy of GDR strength distribution can be well re-
produced. Then we extend this framework to investigate
the isospin effects on the isovector GDR by introducing
the Woods-Saxon potential with different parameters for
neutron and proton respectively.

It is a very interesting subject to study the forma-
tion and properties of super-heavy nuclei. Many research
works [9–10] show that fission delay is in the order of 10–
20 s for the compound nuclei formed in heavy ion reac-
tions with the temperature at about 1 ∼ 2 MeV. One
may expect, therefore, if the fission delay still exists in
very heavy nucleus collisions, the Super Heavy Compound
System (SHCS) would exist within a time long enough to
build the GDR and decay by γ rays emission before fission.
Such GDR γ rays then can be considered as a direct evi-
dence of the formation of the SHCS. There have already
been two experiments performed to study the formation
of the SHCS via the possible GDR γ rays emission [11–
12]. The data is still under analysis. However, there is still
no theoretical research on such heavy compound system
for the GDR γ rays emission. In this article, the char-
acteristics of the GDR have been studied in such heavy
compound systems (supposing it is ever formed in heavy
ion reactions).
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2 The Model

The microscopic semi-classical Vlasov method is devel-
oped from Vlasov equation, a semi-classical limit of the
time dependent Hartree-Fork (TDHF) theory, to calcu-
late the collective excitation in the nucleus. This method
is similar to the Random-Phase-Approximation (RPA)
which is a successful but complicated method in the nu-
clear physics. In the microscopic Vlasov method, temper-
ature is considered straightforward with the T 6= 0 Fermi
distribution of the energy level. It is convenient to study
the interplay between the one-body and two-body damp-
ing by introducing the collision term in the Vlasov equa-
tion with the relaxation time method. The detail descrip-
tion of the microscopic Vlasov method can be found in
[13–15]. The Vlasov equation with collision term can be
described as the following,

∂f

∂t
= {h+ βQ, f} − f − f∗0

τR
, (1)

where, f is the single particle probability density, f∗0 is the
new equilibrated density, τR is the relaxation time. βQ is
an external driving term, h is the self-consistent single
particle hamiltonian,

h(~r, ~p, t) =
~p2

2m
+ U(~r, t), (2)

The temperature dependent relaxation time τ(T ) is
chosen as a function of excitation energy (“temperature”):

h̄

τ(T )
=

h̄

τ0
+

h̄

∆τ(T )
, (3)

where, h̄
τ0

is zero temperature contribution, it is the sum
of volume part

(
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)
and surface part

(
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)
. De-

tails can be found in [15–16]. h̄
∆τ(T ) is non-zero tempera-

ture contribution with ∆τ(T ) = 3.45T−2 + 0.392T−1/2, a
modified expression of [17].

By introducing the response function, the response
strength of the Giant Resonance without residual inter-
action is derived as the following (L denotes the multi-
polarity),

S0
L(ω) = − 1

π
β0
L(ω) (4)
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L(ω) is the imaginary party of the free polarization prop-
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with poles at,

ω̃n(N) = n
2π
T

+N
Γ

T
− i

τR
= ωn(N)− i

τR
, (6)

where, Γ is angular “period” and T is period of the radial
motion. Q̃(n,N) is complex residues,

Q̃(n,N) = A+Bi, (7)

with

A =
2
T
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r1
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QL(r)
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, (8)
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2
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V (r)

sin[Sn(N, r)] sinh
[
τ(r)
τR

]
, (9)

Contributions come from single particle orbits, in the
mean field, with the angular momentum λ and the energy
around the Fermi energy. Everything can be expressed in
terms of radial and angular properties of these orbits, for a
given multipole field QL(r), r1 and r2 are classical turning
points, V (r) is radial velocity field. The phase Sn(N, r) is,

Sn(N, r) = ωn(N)τ(r)−Nψ(r) (10)

where, τ(r) is time elapsed and angle spanned to reach the
point r on the orbit (λ,E), N and n are integers, −∞ <
n < ∞ and −L ≤ N ≤ L respectively, with (−1)N =
(−1)L. Details can be found in [13–15]

The equilibrated single particle probability density is
taken in the form of a general Fermi distribution for the
excited state with temperature T ,

f0 = F (E) =
2

(2πh̄)
1

1 + exp
(
E − Ef
T

) , (11)

The giant resonance strength formalism with the resid-
ual interaction is then as the following :

SL(ω) = − 1
π

ImΠL(ω)

=
S0
L(ω)

(1− κ(L)α0
L(ω))2 + κ(L)2π2S02

L (ω)
(12)

where, κ(L) is the coupling constant of the separable force
(multipole-multipole type).

In the calculations we use the Woods-Saxon potential
for the proton and neutron separately,

Uq(r) =
U0q

1 + exp[(r −R)/a]
+

λ2
q

2mr2
+ Vc q = p

Uq(r) =
U0q

1 + exp[(r −R)/a]
+

λ2
q

2mr2
q = n

(13)
Where, the first term is Woods-Saxon potential, the

interaction radii r = 1.30×A1/3 fm, a = 0.65, U0p = −75
MeV, U0n is chosen in order to have the correct num-
ber of protons and neutrons with the same Fermi energy
Epf = Enf . The second term is centrifugal potential due to
the angular momentum, Vc is the coulomb potential of a
homogeneously charged sphere for protons. The coupling
constant κp(L) (for proton) and κn(L) (for neutron) are
taken as in [15, 18].
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Fig. 1. The calculated results of the peak en-
ergy and widths (FWHM) of the GDR against
atomic mass number. (a), the crosses and up-
triangles represent the experimental peak en-
ergy of the GDR. The dotted line and dashed
line are the empirical formula for the cold and
hot nuclei respectively. The open circles show
the calculated results with temperature at 1
MeV and open squares represent the peak en-
ergies for SHCS at temperature T = 2 MeV.
(b) is the same as (a), but the y-axis represents
the widths of the GDR

3 Results and discussion

3.1 Systematics of GDR

The calculated results are shown in the Fig. 1a for the
peak energy of GDR strength distribution. We select the
even-even nuclei across the periodic table. The tempera-
ture was set at 1 MeV in the calculations, because many
experiments have been done where the nuclear temper-
ature is around 1 MeV. The open circles represent the
calculated results. The crosses represent the experimen-
tal data of the cold nuclei (photon-nucleus reaction) [19]
and the up-triangles are those of the hot nuclei (heavy
ion reactions) [1]. The dotted line and the dashed line are
given by the empirical formula for the cold and for the hot
nuclei respectively. It can be seen, the calculated results
agree with the experiment data quite well and also follow
the empirical formula. The width of the GDR strength dis-
tribution is subtracted by one Lorentz fit. The results are
shown in Fig. 1b. It can reproduce the experimental data
within the error bar. This indicates that the microscopic
Vlasov method is, maybe, reliable to extend to study the
spherical super-heavy nuclei and the isospin effects on the
GDR in the nuclei not very far from the β stability line.

3.2 Isospin effects on GDR

The isospin effects have been studied in the frame of
the microscopic semi-classical Vlasov method. Two points
should be emphasized here. One, we have studied the GDR
systematically in the Vlasov Frame, then apply it to study
the spherical super-heavy nuclei and the isospin effects on
the GDR in the nuclei not very far from the β stability line.
The experimental results are expected to check whether
the model is right in such region. The other, in this theo-
retical frame, we have considered the neutron and proton
potential separately. The different values of the potential
parameter U0 are adopted in order to have the correct
number and the same Fermi energy of protons and neu-
trons in the nucleus. The small isospin effects are observed
in the calculations.

Firstly the Ca isotopes have been studied. Figure 2
shows the calculated peak energy and the widths of the
GDR strength distribution as the function of (N-Z). The
experimental data and our calculations are both lower

Fig. 2. Calculated results for the Ca isotopes. The solid circles
are the peak energy and the open ones are the widths of the
GDR. The dotted line is the empirical formula with 1.8 MeV
shifted down

than the empirical value for nuclei with atomic mass num-
ber A around 40 as shown in Fig. 1a, so the empirical line
in Fig. 2 is shifted down 1.8 MeV in order to observe the
isospin effects more clearly. The calculated values fit the
empirical formula with only A term. It indicates that the
dependence shown in the figure may mainly come from
the dependence of the mass number A. No obvious depen-
dence on the N-Z is seen. These results are similar to the
recent researches via RRPA method for the Ar isotopes
[5]. The widths of the GDR strength distribution show
the similar behaviors.

In the above study, (Z-N) dependence and A depen-
dence are both included in the Ca or Ar isotopes. Thus,
the isospin effects may be covered by mass dependence if
it was small. In order to exclude the mass dependence, we
have selected three groups of isobars (fixed atomic mass
number A) in the light (A=40), intermediate (A=120) and
heavy (A=208) mass regions. The results are shown in
Fig. 3a–c. We can see small isospin effects on the peak en-
ergy of the GDR strength distribution within these three
mass regions. The widths also change a little with the
isospin (N-Z). It is not difficult to see that the peak en-
ergy of the GDR strength distribution increases slightly
with the increase of the isospin (N-Z). The peak energy
for A=40 isobars increases faster than those of A=120 and
A=208 isobars. It can be explained that the isospin effects
on the GDR peak energy depend mainly on the (N-Z)/A
term. In the experiment, the light isobars are more proper
to be selected in the study of the isospin effects on the
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Fig. 3. Calculated results for A = 40 (a), 120
(b), 208 (c), respectively. The solid circles are
the peak energy and the open ones are the
widths of the GDR. The lines guide the eyes

Fig. 4. Temperature dependence of strength
distribution of GDR for 208Pb + 208Pb system
(A = 416): (a) with correlation, (b) without
correlation

Fig. 5. The same as Fig. 4, but for 132Xe +
232Th system (A = 364)

GDR. It is possible now for such experiments because the
available Radioactive Ion Beam (RIB) facilities can pro-
vide the ions with atomic mass numbers close to 40.

3.3 GDR in SHCS

Study of the SHCS is one of the very interesting sub-
jects for a long time. Recent researches for time scale of
the fission process in hot compound nuclei show that the
fission delay time is of the order 10−20 s [9–10], about
ten time longer than the life time of the GDR, which is
about 10−21 s [20]. So, we may observe the GDR γ rays
from the SHCS in very heavy nuclei collisions. Follow-
ing this idea, two experiments have been done, 12 MeV/u
129Xe on 232Th at Cyclotron of Texas A&M University of
United States which is being analyzed by our group and
15 MeV/u 208Pb on 208Pb at RIKEN. In order to under-
stand SHCS possibly formed in these reactions well, we
have studied the GDR from the SHCS in the frame of the
microscopic semi-classical Vlasov method. The SHCS is
generally regarded as largely deformed. However, here we
have to suppose that it is spherical because the present
model doesn’t contain the deformation effects. So we can

study the main characteristics of the GDR in SHCS in the
present paper.

Figures 4 and 5 show the effects of temperature on the
strength distribution of GDR for SHCS formed in 208Pb +
208Pb and 132Xe + 232Th collisions respectively. The cor-
responding peak energy, widths, fraction of EWSR (En-
ergy Weighted Sum Rule) in the resonance region (7 ∼ 25
MeV) and the used relaxation time are given in Table
1. The peak energy of GDR strength distribution is also
shown in Fig. 1a for the SHCS with A=364 and 416 at
T = 2 MeV. This temperature is close to the experimen-
tal one. The values agree with the empirical formula data.
These values need checking with the forthcoming experi-
mental results.

Figures 4a and 5a show the strength distribution of
GDR for A=416 and A=364 systems respectively with
residual interaction (correlated results) and Figs. 4b and
5b present the calculations without residual interaction
(uncorrelated results). In Figs. 4b and 5b, the two-body
dissipation (Collision damping) is contained through the
relaxation time. If we compare with the final strength dis-
tribution calculated with residual interaction (correlated
results), we can find that the strength distribution widths
of GDR become much larger than in the uncorrelated
cases. This is the strength fragmentation effect of the one-
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Table 1. the peak energy, widths, fraction of EWSR in the
resonance region and the used relaxation time for isovector
GDR in 132Xe + 232Th and 208Pb + 208Pb

T Peak Energy Width EWSR h̄/τ
Nucleus (MeV) (MeV) (MeV) (%) (MeV)

132Xe+232Th 1 13.2 7.7 60.6 0.947
2 11.9 7.6 58.2 1.354
3 11.3 8.8 55.8 1.856
4 10.8 10.0 54.0 2.376
5 10.4 10.5 52.6 2.878

208Pb+208Pb 1 12.2 6.6 62.9 0.899
2 11.0 7.0 59.6 1.306
3 10.5 8.3 56.8 1.808
4 10.1 9.4 54.7 2.328
5 9.7 9.7 53.1 2.831

Fig. 6. The comparison of GDR strength distribution in 40Ca
with and without correlation at T = 1.0 MeV

body theories. This also elucidates a quite complicated
interplay between Landau damping (one body damping)
and collision damping (two-body damping). In very heavy
nuclei, the one-body damping plays an important role in
the width spreading of GDR strength distribution com-
pared with two-body damping. It is quite different for the
light nuclei, see Fig. 6, the strength distribution width of
GDR becomes only a little larger from uncorrelated results
to correlated results.

With increasing of the temperature, a clear decrease
of the strength allocated in the giant resonance region
is observed for both cases of with and without residual
interaction as shown in Figs. 4, 5. The fractions of the
EWSR decrease from 62.9% to 53.1% for 208Pb + 208Pb
and from 60.6% to 52.6% for 132Xe + 232Th, as given in
Table 1, with increasing of the temperature. At the same
time, the widths become lager and larger. This means that
the strength of GDR in SHCS become weaker and weaker
and finally quench as the temperature further increases,
which is similar to the experimental results for the nuclei
around the β stability line. The peak energy is shifted to
the low energy side a little with increasing of the temper-
ature in the correlated cases. However, there is no obvious
change of peak energies in the uncorrelated cases.

4 Summary

In a summary, within the frame of the microscopic semi-
classical Vlasov method with the Wood-Saxon nuclear po-
tential, the calculated results of the systematics of the
peak energy and the widths of the GDR strength distri-
bution can reproduce the experimental data and follow the
empirical formula in the whole periodic table. The calcula-
tions were extended to very heavy nuclei (A ∼ 400). They
need checking with experimental data. The effects of the
isospin on the peak energy and widths of the GDR are
small. We also observed that these small isospin effects
are more obvious in the light nuclei than in the heavy
ones. They are proportional to (N − Z)/A.

The behaviors of the GDR for the SHCS are also in-
vestigated. The main results show that, in the very heavy
nuclei, the residual interaction play a fundamental role in
the widths of GDR strength distribution, i.e. the collision
damping predominates the damping of the GDR compar-
ing with the Landau damping. The temperature plays an-
other important role in describing the GDR for SHCS.
There is a noticeable quenching of the response strength
at high temperature and the widths obviously increase
with the temperature. A slow decreasing of the peak en-
ergy of GDR for the SHCS with temperature increasing is
also obtained.

Finally, we have found some interesting behaviors
about the GDR in spherical SHCS and the isospin ef-
fects on the GDR in the isobars although the present
microscopic semi-classical Vlasov methods has some lim-
itations. In the present model, the studied nuclei are not
very far from the β stability line, assuming that the nuclei
are spherical and the residual interaction parameters are
somewhat uncertain. An improved Vlasov model, which
contains the deformation and the parameters suitable to
the nuclei very far from the β stability line, is under con-
sideration.
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